A. Python for beginners
- Syntax
- Variables
- Data types (Numbers - Strings - Lists - Set, tuples and Boolean - Dictionary)
- Flowchart
- Input & output
- Comparison operators
- Conditional statements
- Loops (while/for loops)
- Python built-in functions (enumerate, zip, ...)
- List|Dict Comprehensions
- Mini-project #1 (Calculator)
- Mini-project #2 (Guess the Number Game)
- Functions
- Scope of variables (Local/Global)
- File Handling
- Lambda Expressions
- Map, Reduce, Filter using Lambda Expression
- Error Handling
- Introduction to classes
- OOP Concepts (Encapsulation, inheritance, abstraction, polymorphism)
- Converting Jupiter notebook to .py
- Importing .py & packages
- OS package handling
- Git & GitHub
- Mini-project #3 (TicTacToe)
- Mini-project #4 (Rock Paper Scissors)
- Python Final Project (Classes using 4 Mini-projects)
B. Databases (SQL--MYSQL)
- Introduction to Database
- Relational Database (Primary key - Foreign Key - Entity Relationships)
- SQL Syntax
- DDL (Create Database & Tables - Alter - Drop - Truncate)
- Data Manipulation (Select - Insert - Update - Delete)
- Query Language (Select - Where - Order By - Group By ... etc)
- Database Project (Company Usecase)
- Connect database to python
- Bonus Video (Python TKinter for GUI)
- Bonus Task (Create a GUI interface for Company Database)
C. Math & Statistics for Data science
- Getting started with statistics
- Data Classification
- Standard Deviation
- Correlation and Covariation
- Introduction to Probability
- Hypothesis Testing
- Marginal and Conditional Probability
- Normal Distribution
- Linear Algebra (Matrix Calculations)
D. Python packages for Data analysis
- Numpy
- Pandas
- Matplotlib
- Seaborn
E. Data Importing & Cleansing
- Importing from different sources of data using Pandas
- Handling Missing and Invalid Data
- Cleansing Missing Data Using Pandas Python Package
- Cleansing the outlying data using Pandas Python Package
- Missing Data Imputation
- Categorical Variable Encoding
F. Exploratory Data Analysis using Python
- Visualization Options
- Data Modelling
- Introduction to PowerBI
G. Exploratory Data Analysis
- Data Visualization using Python Packages
- Project #1: TMDB Movies Dataset Analysis
- EDA Using PowerBI
- Project #2: Udemy Courses Dataset Analysis